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Abstract
We argue that the multi-particle scattering amplitudes in N = 4 SUSY at large
Nc and in the multi-Regge kinematics for some physical regions have the high
energy behavior corresponding to the contribution of the Mandelstam cuts in
the corresponding t-channel partial waves. The Mandelstam cuts correspond to
gluon composite states in the adjoint representation of the gauge group SU(Nc).
The Hamiltonian for these states in the leading logarithmic approximation
coincides with the local Hamiltonian of an integrable open spin chain. We
construct the corresponding wavefunctions using the integrals of motion and
the Baxter–Sklyanin approach.

PACS numbers: 02.30.Ik, 11.30.Pb, 12.38.−t, 75.10.Pq

1. Introduction

At high energies s � −t in QCD the elastic scattering amplitude for the process AB → A′B ′

in the leading logarithmic approximation (LLA)

αs ln s ∼ 1, αs � 1 (1)

has the Regge form [1]

A2→2 = 2gδλAλA′ T
c
AA′

s1+ω(t)

t
gT c

BB ′δλBλB′ , t = −�q2. (2)

Here T c are the generators of the gauge group SU(Nc), λr are the particle helicities and
j (t) = 1 + ω(t) is the gluon Regge trajectory for the spacetime dimension D = 4 − 2ε,

ω(−�q2) = − αsNc

(2π)2
(2πμ)2ε

∫
d2−2εk

�q2

�k2(�q − �k)2
≈ −a

(
ln

�q2

μ2
− 1

ε

)
. (3)

In the framework of the dimensional regularization the parameter μ is the renormalization
point for the ’t Hooft coupling constant and

a = αsNc

2π
(4π e−γ )ε, γ = −ψ(1), (4)
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where γ = −ψ(1) is the Euler constant and ψ(x) = (ln 
(x))′. The gluon trajectory j (t)

was calculated also in the next-to-leading approximation in QCD [2] and in the SUSY gauge
models [3].

In LLA gluons with momenta kr (r = 1, . . . , n) are produced in the multi-Regge
kinematics,

s = (pA + pB)2 � sr = (kr + kr−1)
2 � −tr = q2

r , kr = qr+1 − qr, (5)

where the amplitude has the factorized form

A2→2+n = 2sδλAλA′ gT
c1
AA′

s
ω(−�q2

1 )

1

�q2
1

gCμ(q2, q1)e
∗
μ(k1)T

d1
c2c1

s
ω(−�q2

2 )

2

�q2
2

. . .
s
ω(−�q2

n+1)

n+1

�q2
n+1

gT
cn+1
BB ′ δλλB′ . (6)

Here Cμ(q2, q1) is the effective reggeon–reggeon gluon vertex. In the case when the
polarization vector eμ(k1) describes the gluon with a positive helicity in its c.m. system
with the particle A′ one can obtain [4]

C ≡ Cμ(q2, q1)e
∗
μ(k1) =

√
2
q∗

2 q1

k1
, (7)

where the complex notation q = qx + iqy for the two-dimensional transverse vectors �q was
used.

The elastic scattering amplitude with vacuum quantum numbers in the t-channel is
calculated in terms of the production amplitude A2→2+n with the use of the s-channel unitarity
[1]. In this approach the Pomeron appears as a composite state of two reggeized gluons. It
is convenient to present the gluon transverse coordinates in the complex form together with
their canonically conjugated momenta [4, 5],

ρk = xk + iyk, ρ∗
k = xk − iyk, pk = i

∂

∂ρk

, p∗
k = i

∂

∂ρ∗
k

. (8)

In this case the homogeneous Balitsky–Fadin–Kuraev–Lipatov (BFKL) equation for the
Pomeron wavefunction can be written as follows [1]:

E(�ρ1, �ρ2) = H12(�ρ1, �ρ2), � = −αsNc

2π
min E, (9)

where � is the Pomeron intercept entering in the asymptotic expression for the total cross-
section σt ∼ s�. The BFKL Hamiltonian has a rather simple operator representation [5]

H12 = ln|p1p2|2 +
1

p1p
∗
2

(ln|ρ12|2)p1p
∗
2 +

1

p∗
1p2

(ln|ρ12|2)p∗
1p2 − 4ψ(1), (10)

with ρ12 = ρ1 − ρ2. The kinetic energy is proportional to the sum of two gluon Regge
trajectories ω(−|pi |2) (i = 1, 2). The potential energy ∼ ln|ρ12|2 is obtained by the Fourier
transformation from the product of two gluon production vertices Cμ. This Hamiltonian is
invariant under the Möbius transformation [6]

ρk → aρk + b

cρk + d
, (11)

where a, b, c and d are complex parameters. The eigenvalues of the corresponding Casimir
operators are expressed in terms of the conformal weights,

m = 1

2
+ iν +

n

2
, m̃ = 1

2
+ iν − n

2
, (12)

where ν and n are respectively real and integer numbers for the principal series of unitary
representations of the Möbius group SL(2, C). The eigenvalues of H12 depend on these
parameters [6]:

Em,m̃ = ψ(m) + ψ(1 − m) + ψ(m̃) + ψ(1 − m̃) − 4ψ(1). (13)
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The Pomeron intercept in LLA is positive,

� = 4
αs

π
Nc ln 2 > 0, (14)

and therefore the Froissart bound σt < c ln2 s for the total cross-section is violated [1].
To restore the broken s-channel unitarity one should take into account the contributions of
diagrams corresponding to the t-channel exchange of an arbitrary number of reggeized gluons
in the t-channel. The wavefunction of the colorless state constructed from n reggeized gluons
can be obtained in LLA as a solution of the Bartels–Kwiecinski–Praszalowicz (BKP) equation
[7]:

E = H(0), � = −αsNc

4π
min E. (15)

In the Nc → ∞ limit the color structure is simplified and the corresponding Hamiltonian has
the property of the holomorphic separability [8]:

H(0) =
n∑

k=1

Hk,k+1 = h(0) + h(0)∗, [h(0), h(0)∗] = 0. (16)

It is a consequence of the similar property for the pair BFKL Hamiltonian H12 (10) and the
energy Em,m̃ (13).

The holomorphic Hamiltonian in the multi-color QCD can be written as follows (cf (10)):

h(0) =
∑

k

h
(0)
k,k+1, h

(0)
12 = ln(p1p2) +

1

p1
(ln ρ12)p1 +

1

p2
(ln ρ12)p2 − 2ψ(1), (17)

where ψ(x) = (ln 
(x))′. As a result, the wavefunction  has the holomorphic factorization
[8]

 =
∑
r,̃r

ar,̃r
r(ρ1, . . . , ρn)

r̃(ρ∗
1 , . . . , ρ∗

n), (18)

which in the case of two-dimensional conformal field theories is a consequence of the infinite
dimensional Virasoro group. Moreover, the holomorphic Hamiltonian h(0) is invariant under
the duality transformation [9]

pi → ρi,i+1 → pi+1, (19)

combined with its transposition.
Further, there are integrals of motion qr commuting among themselves and with h(0)

[5, 10]:

q(0)
r =

∑
k1<k2<···<kr

ρk1k2ρk2k3 . . . ρk2k3 . . . ρkrk1pk1pk2 . . . pkr
, [qr, h] = 0. (20)

The integrability of the BFKL dynamics in LLA was established in [10]. This remarkable
property is related to the fact that h coincides with the local Hamiltonian of an integrable
Heisenberg spin model [11]. Eigenvalues and eigenfunctions of this Hamiltonian were
constructed in [12, 13] in the framework of the Baxter–Sklyanin approach [14].

In the next-to-leading approximation the integral kernel for the BFKL equation was
constructed in [3, 15]. In QCD the eigenvalue of the kernel contains the Kroniker symbols
δn,0 and δn,2 but in N = 4 SUSY it is an analytic function of the conformal spin and having
the property of the maximal transcendentality [3, 16]. This extended supersymmetric theory
appears in the framework of the AdS/CFT correspondence [17–19]. It is important that the
one-loop anomalous dimension for twist-2 operators in N = 4 SUSY is proportional to the
expression ψ(1) − ψ(j − 1), which is related to the integrability of evolution equations for
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the quasi-partonic operators in this model [20]. The integrability also persists for some
operators in QCD [21]. The maximal transcendentality principle suggested in [16] gave a
possibility of extracting the universal anomalous dimension up to three loops in N = 4 SUSY
[22, 23] from the corresponding QCD results [24]. The integrability of the N = 4 model was
also verified for other operators, large coupling constants and in higher loops [25–27]. The
asymptotic Bethe ansatz and integrability allowed us to calculate the anomalous dimensions in
four loops [28]. The result is in an agreement with the next-to-leading BFKL predictions after
taking into account the wrapping effects [29]. The maximal transcendentality was helpful for
finding a closed integral equation for the cusp anomalous dimension in this model [30, 31]
with the use of the four-loop result [32].

There is another region of investigation, in which the remarkable properties of the
N = 4 SUSY are also found. Namely, Bern, Dixon and Smirnov (BDS) suggested a simple
ansatz for the gluon scattering amplitudes in this model [33]. This ansatz was verified for the
elastic amplitude in the strong coupling regime using the AdS/CFT correspondence [34]. But
the BDS hypothesis does not agree in this regime with the calculation of the multi-particle
amplitude [35]. The property of the conformal invariance of the BDS amplitudes in the
momentum space was discussed in [36] and the relation with the Wilson loop approach was
suggested in [37] generalizing the results of the strong coupling calculations of [34]. The
BDS amplitudes An for n � 6 in the multi-Regge kinematics do not have correct analytic
properties compatible with the Steinman relations [38]. It is a consequence of the fact that
these amplitudes do not include the Mandelstam cuts [38]. This cut contribution was obtained
from the BFKL-like equation for the amplitude with the t-channel exchange in the adjoint
representation of the gauge group [38]. This equation was solved in LLA and the two-loop
expression for the six-point scattering amplitude in the multi-Regge kinematics was derived
[39]. Recently the two-loop correction was calculated numerically for some values of external
momenta in an agreement with expectations based on the Wilson loop approach [40].

In this paper, we demonstrate that in the multi-color limit for the production amplitudes the
contributions of the Mandelstam cuts generated by the multi-reggeon t-channel exchange can
be expressed in terms of the solution of the BKP-like equation for the composite states of several
reggeized gluons in the adjoint representation. It turns out that in LLA the corresponding
Hamiltonian coincides with the local Hamiltonian of an integrable open Heisenberg spin
chain. These results, partly, were presented at the conferences [41, 42].

2. Mandelstam cuts

A planar amplitude for the production of two gluons in the multi-Regge kinematics
s � |s1| ∼ |s2| ∼ |s3| � |t1| ∼ |t2| ∼ |t3| has the multi-Regge form almost in all physical
kinematical regions. But in the physical region where s1, s3 < 0; s > 0, s2 > 0 the amplitude
contains also the Mandelstam cut [43] in the angular momentum plane j2 of the crossing
channel t2 = −q2 [38] in the adjoint representation of the color group. The cut appears as a
result of the exchange of two reggeized gluons with the momenta p1 = k and p2 = q − k,
respectively [39] (see appendix A for more details). In the region s1, s3 < 0; s2 > 0 the
integrals over the Sudakov variables α = kpA/pApB and β = kpB/pApB do not vanish as
in other regions because the integrand contains singularities situated above and below the
corresponding integration contours in accordance with the Mandelstam requirements [43].
These singularities lead to simultaneous discontinuities of the amplitude in the invariants s2

and s.
For the planar amplitude with six external particles only diagrams with two reggeons in

the t2-channel give a non-vanishing contribution because for a larger number of reggeons the
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Mandelstam conditions for singularities in other Sudakov variables are not fulfilled. However,
in the case of a larger number of external particles the exchange of several reggeons with
momenta pl gives also a non-vanishing contribution to the amplitude constructed from planar
diagrams. For the Mandelstam cut resulting from an exchange of n reggeons, one needs
at least k = 2 + 2n external particles to have simultaneous singularities in upper and lower
complex semi-planes for the Sudakov parameters α′

l , β
′
l of the reggeon momenta pl , as it is

demonstrated in appendix A.
Let us discuss such a composite state of n reggeized gluons in the adjoint representation

(cf a similar approach for the simple case n = 4 in [39]). One can write the homogeneous
BKP equation for its wavefunction described by an amplitude with amputated propagators in
the form (see appendix A)

H = E, �n = −g2Nc

16π2
E. (21)

Here H is a redefined Hamiltonian obtained after subtraction of the gluon Regge trajectory
ω(t) containing infrared divergences. Namely, the Regge trajectory of the composite state is
[41, 42]

ωn(t) = a

(
1

ε
− ln

−t

μ2

)
+ �n, a = g2Nc

8π2
(4π e−γ )ε, (22)

where �n is the infrared stable quantity expressed in terms of the energy E.
The Hamiltonian H in the multi-color limit can be written in the holomorphically separable

form (see appendix A) (cf [39])

H = h + h∗, h = ln
p1pn

q2
+

n−1∑
r=1

ht
r,r+1, q =

n∑
1

pr, (23)

where the pair Hamiltonian ht
r,r+1 is transposed to the corresponding unamputated operator

(17),

ht
r,r+1 = ln(prpr+1) + pr ln(ρr,r+1)

1

pr

+ pr+1 ln(ρr,r+1)
1

pr+1
+ 2γ. (24)

It is seen from equation (23) that the holomorphic Hamiltonian for the composite state in the
adjoint representation differs from the corresponding expression for the singlet case h(0) (17)
after its transposition only by the substitution

hn,1 → ln
p1pn

q2
, (25)

which is related to the fact that the planar Feynman diagrams have the topology of a strip and
the infrared divergences in the Regge trajectories of particles 1 and n are not compensated by
the contribution from the pair potential energy Vn,1.

It turns out that the eigenvalues E do not depend on |q|2 due to the scale invariance of H,
as will be demonstrated below. As a result, the t-dependence of ωn(t) is the same as in the
gluon Regge trajectory.

The transposed holomorphic Hamiltonian is related to the initial Hamiltonian by the
similarity transformation

ht =
(

n∏
r=1

pr

)−1

h

(
n∏

r=1

pr

)
, (26)

which leads to the following hermicity property of the total Hamiltonian H:

H + =
(

n∏
r=1

|pr |2
)−1

H

(
n∏

r=1

|pr |2
)

. (27)
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The last relation is compatible with the normalization condition for the wavefunction:

‖‖2 =
∫ n−1∏

r=1

d2pr
∗

n∏
s=1

|ps |−2,

n∑
s=1

ps = q. (28)

Using the duality transformation (cf [9])

p1 = z0,1, pr = zr−1,r , q = z0,n, ρr,r+1 = i
∂

∂zr

= i∂r , (29)

the holomorphic Hamiltonian can be rewritten as follows:

h = ln
z0,1zn−1,n

z2
0,n

+
n−1∑
r=1

ht
r,r+1, (30)

where

ht
r,r+1 = 2 ln(∂r) +

1

∂r

1

zr−1,r

+
1

∂r

1

zr+1,r

+ ln(zr,r+1zr−1,r ) + 2γ. (31)

Here and later we neglect the pure imaginary contribution 2 ln(i) because it is canceled in
the total Hamiltonian H. Note that for the colorless composite state and q = z0,n = 0 the
transformation (29) is indeed reduced to the usual duality substitution of [9].

To simplify h one can use the relations [5, 9]

ln ∂ = − ln x +
1

2
(ψ(x∂ + 1) + ψ(−x∂)),

ln(x2∂) = ln x +
1

2
(ψ(x∂) + ψ(−x∂ + 1)), (32)

ln ∂ = ln(x2∂) − 2 ln x +
1

∂

1

x
.

Then ht
r,r+1 can be presented as follows:

ht
r,r+1 = ln

(
z2
r,r+1∂r

)
+ ln

(
z2
r−1,r ∂r

) − ln zr,r+1 − ln zr−1,r + 2γ. (33)

Further, by regrouping its terms we can write the holomorphic Hamiltonian in another
form

h = −2 ln z0,n + ln
(
z2

0,1∂1
)

+ ln
(
z2
n−1,n∂n−1

)
+ 2γ +

n−2∑
r=1

h′
r,r+1, (34)

where

h′
r,r+1 = ln

(
z2
r,r+1∂r

)
+ ln

(
z2
r,r+1∂r+1

) − 2 ln zr,r+1 + 2γ

= ln(∂r) + ln(∂r+1) +
1

∂r

ln zr,r+1∂r +
1

∂r+1
ln zr,r+1∂r+1 + 2γ. (35)

The pair Hamiltonian h′
r,r+1 coincides in fact after the substitution zr → ρr with the

corresponding Hamiltonian in the coordinate representation (17) acting on the wavefunction
with non-amputated propagators.

In particular, for n = 2 one obtains (cf [39])

h = −2 ln z0,2 + ln
(
z2

0,1∂1
)

+ ln
(
z2

1,2∂1
)

+ 2γ. (36)

It is important that h (34) is invariant under the Möbius transformations

zk → azk + b

czk + d
(37)

6
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and does not contain the derivatives ∂0 and ∂n. Therefore we can put

z0 = 0, zn = ∞, (38)

which leads to the simplified expression for h

h → h′ = ln
(
z2

1∂1
)

+ ln(∂n−1) + 2γ +
n−2∑
r=1

h′
r,r+1. (39)

To return to initial variables in the final expression for the wavefunction one should perform
the following substitution of zk:

zk → zk − z0

zk − zn

=
∑k

r=1 pr

q − ∑k
r=1 pr

. (40)

According to the above representation (30) for h, its transposed part ht can be obtained
from h by the similarity transformation which can be written in terms of h′ as follows:

h′t = z−1
1

(
n−2∏
r=1

zr,r+1

)−1

h′z1

(
n−2∏
r=1

zr,r+1

)
, (41)

which is compatible with the following normalization condition for the wavefunction in the
full two-dimensional space:

‖‖2
1 =

∫
d2zn−1

|z1|2
n−2∏
r=1

d2zr

|zr,r+1|2 ||2. (42)

On the other hand, from expression (39) for h′ we obtain another relation for h′t :

h′t =
(

n−1∏
r=1

∂r

)
h′

(
n−1∏
r=1

∂r

)−1

, (43)

corresponding to the second normalization condition for  compatible with the hermicity
properties of the total Hamiltonian:

‖‖2
2 =

∫ n−1∏
r=1

d2zr
∗

n−1∏
r=1

|∂r |2. (44)

By comparing the above two relations between h′ and h′t one can conclude (cf [10]) that
the operator

A′ = z1

n−2∏
s=1

zs,s+1

n−1∏
r=1

∂r (45)

commutes with the holomorphic Hamiltonian

[A′, h′] = 0. (46)

3. Integrable open spin chain

Let us verify that the holomorphic Hamiltonian h′ (39) also commutes with the differential
operator D(u) being the matrix element T22 of the monodromy matrix (cf [10]):

T (u) =
(

A(u) B(u)

C(u) D(u)

)
= L1(u)L2(u) . . . Ln−1(u), (47)

7
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where the L-operator is defined by the relation

Lr(u) =
(

u + izr∂r i∂r

−iz2
r ∂r u − izr∂r

)
. (48)

To prove the commutativity of h′ and D(u) one can use the following relation:

[Lk(u)Lk+1(u), h′
k,k+1] = −i (Lk(u) − Lk+1(u)) , (49)

valid due to the Möbius symmetry of the pair Hamiltonian:

[ �Mk,k+1, h
′
k,k+1] = 0, �Mk,k+1 = �Mk + �Mk+1 (50)

and the commutation relation (see [9])[
h′

k,k+1,
[ �M2

k,k+1,
�Nk,k+1

]] = 4 �Nk,k+1, �Nk,k+1 = �Mk − �Mk+1. (51)

The last relation is a consequence of the fact that the operator �Nk,k+1 has non-vanishing matrix
elements only between the states |mk,k+1〉 and |mk,k+1 ± 1〉 in the representation where the
Casimir operator of the Möbius group is diagonal:

�M2
k,k+1|mk,k+1〉 = mk,k+1(mk,k+1 − 1)|mk,k+1〉. (52)

In this representation the commutation relation (51) is reduced to the recurrent relation for the
eigenvalues ε(mk,k+1) of the Hamiltonian h′

k,k+1 (35):

ε(m + 1) − ε(m) = 2/m, (53)

fulfilled due to the well-known representation of ε(m):

ε(m) = ψ(m) + ψ(1 − m) + 2γ. (54)

Relation (49) leads to the equality[
T (u),

n−2∑
r=1

h′
r,r+1

]
= iL2(u)L3(u) . . . Ln−1(u) − iL1(u)L2(u) . . . Ln−2(u). (55)

On the other hand, one can easily verify that[
T22(u), ln

(
z2

1∂1
)

+ ln ∂n−1
] = (0, 1)

[
T (u), ln

(
z2

1∂1
)

+ ln ∂n−1
] (

0
1

)
= −i(0, 1)(L2(u)L3(u) . . . Ln−1(u) − L1(u)L2(u) . . . Ln−2(u))

(
0
1

)
, (56)

which proves that the differential operator D(u) = T22(u) is an integral of motion:

[D(u), h′] = 0. (57)

Thus, our Hamiltonian is the local Hamiltonian for an open integrable Heisenberg spin model
with the spins which are generators of the Möbius group1.

With the use of the following decomposition of the L-operators:

Lr(u) =
(

u 0
0 u

)
+

(
1

−zr

)
(zr , 1) i∂r , (58)

one can construct the matrix element T22 = D(u) in an explicit way:

D(u) =
n−1∑
k=0

un−1−kq ′
k, (59)

1 I thank L D Faddeev for the fruitful discussion in which he suggested that the operator D(u) could be an integral
of motion for this open spin chain.
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where

q ′
0 = 1, q ′

1 = −i
n−1∑
r=1

zr∂r . (60)

In a general case the integrals of motion q ′
k are given below:

q ′
k = −

∑
0<r1<r2<···<rk<n

zr1

k−1∏
s=1

zrs ,rs+1

k∏
t=1

i∂rt
. (61)

In particular, we obtain that q ′
n−1 is proportional to the integral of motion A′ (45):

q ′
n−1 = −in−1z1

n−2∏
s=1

zs,s+1

n−1∏
t=1

∂t = −in−1A′. (62)

Note that one can parametrize the monodromy matrix in another form

T (u) =
(

j0(u) + j3(u) j+(u)

j−(u) j0(u) − j3(u)

)
, j±(u) = j1(u) ± ij2(u). (63)

In this case the Yang–Baxter equations for the currents jμ have the Lorentz-invariant
representation [9]

[jμ(u), jν(v)] = εμνρσ

2(u − v)
(jρ(u)jσ (v) − jρ(v)jσ (u)). (64)

Here εμνρσ is the antisymmetric tensor in the four-dimensional Minkowski space and
ε1230 = 1, gμν = (1,−1,−1,−1).

In particular, we obtain from the Yang–Baxter equations the relation

[j0(u) − j3(u), j0(v) − j3(v)] = [j0(v), j3(u)] − [j0(u), j3(v)] = 0, (65)

and therefore the integrals of motion q ′
k are independent operators and commute each with

others,

[q ′
k, q

′
l ] = 0. (66)

4. Composite states of two and three gluons

In the case n = 2 we have only one non-trivial integral of motion,

q ′
1 = −iz1∂1. (67)

Taking into account the normalization condition for the eigenfunction in the two-dimensional
space

‖‖2 =
∫

d2z1

|z1|2 ||2, (68)

we find the orthonormalized and complete set of eigenfunctions:


(2)
m,m̃ = z

− 1
2 +m

1 (z∗
1)

− 1
2 +m̃, m = 1 + n

2
+ iν, m̃ = 1 + n

2
− iν, (69)

satisfying the single-valuedness requirement. Note that using the substitution (40) one can
reproduce the wavefunctions of two gluon composite states in the momentum space (see [39]).

For the case n = 3 the operator D(u) is given below:

D3(u) = u2 − iu(z1∂1 + z2∂2) + z1z1,2∂1∂2. (70)

9
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By taking into account the normalization condition

‖‖2 =
∫

d2z1 d2z2

|z1|2|z1,2|2 ||2, (71)

one can search the holomorphic eigenfunction of this operator in the form

(3)
m = z

− 1
2 +m

2 f

(
z2

z1

)
. (72)

The function f (x) satisfies the equation(
x(1 − x)∂2 +

(
1

2
+ m

)
(1 − x)∂ + λ

)
f = 0, x = z2

z1
, (73)

where λ is the eigenvalue of the operator z1z1,2∂1∂2. Two independent solutions of this
equation can be expressed in terms of the hypergeometric function F:

f1(x) = F(a1, a2; 1 + a1 + a2; x), f2(x) = xa1+a2F(−a2,−a1; 1 − a1 − a2; x), (74)

where the parameters a1 and a2 are obtained from the set of equations

a1 + a2 = − 1
2 + m, a1a2 = −λ. (75)

The solutions near the point x = 1 can also be expressed in terms of hypergeometric functions
and are expanded as follows:


(a1)
(a2)


(1 + a1 + a2)
f1(x)|x→1 = 1

a1a2
− (x − 1)(ln(1 − x) − ψ(1)

−ψ(2) + ψ(1 + a1) + ψ(1 + a2))

and

(−a1)
(−a2)


(1 − a1 − a2)
f2(x)|x→1 = 1

a1a2
− (x − 1)(ln(1 − x) − ψ(1)

−ψ(2) + ψ(1 − a1) + ψ(1 − a2)).

Analogously one can find the large-x behavior of the functions f1 and f2:

f1(x)|x→∞ = 
(a1 + a2 + 1)
(a2 − a1)


(a2)
(1 + a2)
(−x)−a1 +


(a1 + a2 + 1)
(a1 − a2)


(a1)
(1 + a1)
(−x)−a2 ,

f2(x)|x→∞ = 
(1 − a1 − a2)
(a1 − a2)


(−a2)
(1 − a2)
(−x)−a2 +


(1 − a1 − a2)
(a2 − a1)


(−a1)
(1 − a1)
(−x)−a1 .

To construct the wavefunction  with the property of the single-valuedness in the two-
dimensional subspaces �z1 and �x we should write a bilinear combination of the functions fi(x)

and the corresponding functions in the anti-holomorphic subspace f̃i (x
∗) taking into account

that in the second pair of functions one should perform the substitution

a1 → ã1, a2 → ã2, m → m̃ = 1 − n

2
+ iν. (76)

Due to the single-valuedness of the wavefunction near x = 0 we obtain for it the following
expression:

 = |z2|2iν

(
z2

z∗
2

) n
2

m,m̃(�x), m,m̃(�x) = f1(x)f̃1(x
∗) + Cf2(x)f̃2(x

∗), (77)

where the constant C should be fixed from the requirement that the analytic continuation of 

in the neighborhood of the points x = 1 and x = ∞ leads also to a single-valued expression.

10
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The condition that near x = 1 the terms proportional to |x −1|2 ln(1−x) ln(1−x∗) are absent
gives the relation


(a1 + a2 + 1)


(a1)
(a2)


(ã1 + ã2 + 1)


(ã1)
(ã2)
+ C


(1 − a1 − a2)


(−a1)
(−a2)


(1 − ã1 − ã2)


(−ã1)
(−ã2)
= 0. (78)

Providing that the constant C is fixed by this equality, the behavior of the total wavefunction
at x → 1 is simplified:

lim
x→1

m,m̃(�x) ∼ (ψ(1 + a1) + ψ(1 + a2) − ψ(−a1) − ψ(−a2)) |1 − x|2 ln(1 − x∗)

+ (ψ(1 + ã1) + ψ(1 + ã2) − ψ(−ã1) − ψ(−ã2)) |1 − x|2 ln(1 − x). (79)

Thus, the single-valuedness condition at x → 1 leads to the additional equation

cot(πa1) + cot(πa2) = cot(πã1) + cot(πã2). (80)

A stronger constraint can be obtained from the single-valuedness condition for  at
x → ∞. Indeed, its consequence for the bilinear combinations

(−x)−a(−x∗)−ã1 , (−x)−a2(−x∗)−ã2

leads to the relations

a1 − ã1 = Na1 , a2 − ã2 = Na2 , (81)

where Na1 , Na2 are integers. Further, the absence of the interference terms

(−x)−a1(−x∗)−ã2 , (−x)−a2(−x∗)−ã1

is fulfilled due to the above relation (77) for C.
One can write the integral representation for the wavefunction satisfying the above

constraints:

 ∼ z
a1+a2
2 (z∗

2)
ã1+ã2

∫
d2y

|y|2 y−a2(y∗)−ã2

(
y − 1

y − x

)a1
(

y∗ − 1

y∗ − x∗

)ã1

, x = z2

z1
, (82)

where the integration is performed over the two-dimensional plane �y. Note that the integrand
has no ambiguity in the points y = 0, 1, x due to the derived relations between a1, ã1 and
a2, ã2. Moreover, the function  near the points x = 0, 1,∞ can be presented in terms of the
sum of products of the above hypergeometric functions.

There is another basis for the holomorphic solutions

1(z1, z2) = z
a1
1 z

a2
2 F

(
a1,−a2, 1 + a1 − a2; z1

z2

)
,

(83)

2(z1, z2) = z
a2
1 z

a1
2 F

(
a2,−a1, 1 + a2 − a1; z1

z2

)
,

allowing us to construct an equivalent representation for the total wavefunction . Note that
these functions can be written in terms of the Mellin–Barnes integrals

1(z1, z2) ∼
∫ i∞

−i∞


(a1 + s)
(−a2 + s)
(−s)


(a1 − a2 + 1 + s)
(−z1)

a1+s(−z2)
a2−s ds,

(84)

2(z1, z2) ∼
∫ i∞

−i∞


(a2 + s)
(−a1 + s)
(−s)


(a2 − a1 + 1 + s)
(−z1)

a2+s(−z2)
a1−s ds.

Here it is assumed that the poles of 
(−s) are situated to the right from the integration contour
whereas all other poles lie to the left of it.

11
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5. Hamiltonian and integrals of motion

The holomorphic Hamiltonian for composite states of two reggeized gluons can be written as
follows:

h̃ = ln
(
z2

1∂1
)

+ ln(∂1) + 2γ = ψ(z1∂1) + ψ(−z1∂1) + 2γ. (85)

Acting by h̃ on the function zδ
1 we obtain

h̃zδ
1 = ε(δ)zδ

1, ε(δ) = ψ(δ) + ψ(−δ) + 2γ. (86)

In the case of wavefunction (69) satisfying the single-valuedness and orthonormality conditions
in the two-dimensional space one derives the following expression for the total energy [39]:

Em,m̃ = εm + εm̃, εm = ψ
(− 1

2 + m
)

+ ψ
(

1
2 − m

)
+ 2γ. (87)

Note that it does not coincide with the corresponding result (13) for the Pomeron state.
The holomorphic Hamiltonian for composite states of three gluons has the form

h′ = ln
(
z2

1∂1
)

+ ln(∂2) + ln
(
z2

1,2∂1
)

+ ln
(
z2

1,2∂2
) − 2 ln z1,2 + 4γ. (88)

In the region

z1 � z2, (89)

it is a sum of two independent pair Hamiltonians

h′ = ψ(z1∂1) + ψ(−z1∂1) + ψ(z2∂1) + ψ(−z2∂1) + 4γ. (90)

Because the limit x = z2/z1 → ∞ in solution (72) corresponds to this kinematics, we obtain

ε = ε(a1) + ε(a2), (91)

where a1 and a2 are the parameters of the three-gluon composite state (see (75)). The
eigenvalues of the integrals of motion are also expressed in terms of these parameters. Due
to the normalizability condition these quantities together with the parameters ã1, ã2 of the
wavefunction in the anti-holomorphic space should be chosen as follows:

a1 = iνa1 +
na1

2
, a2 = iνa2 +

na2

2
,

(92)
ã1 = iνa1 − na1

2
, ã2 = iνa2 − na2

2
,

where νr are real and nr are integer numbers.
Note that

ν = νa1 + νa2 , n = na1 + na2 , a1a2 = −λ, ã1ã2 = −λ̃ (93)

and the eigenvalues of two integrals of motion q ′
k can be obtained as coefficients of the

polynomials

P2(u) = (u − ia1)(u − ia2), P̃2(u) = (u − iã1)(u − iã2). (94)

Generally for the composite state of n reggeized gluons the situation is similar. Namely,
the holomorphic wavefunction in the region

z1 � z2 � z3 � · · · � zn−1 (95)

is factorized

a1,a2,...,an−1 =
n−1∏
r=1

zar

r . (96)

12



J. Phys. A: Math. Theor. 42 (2009) 304020 L N Lipatov

The energy for this solution is the sum of the particle energies

ε =
n−1∑
r=1

ε(ar). (97)

The eigenvalues of integrals of motion q ′
k can be expressed in terms of the coefficients of

the polynomial

Pn(u) =
n−1∏
r=1

(u − iar). (98)

Due to the condition of the normalizability the parameters should have the form

ar = iνr +
nr

2
, (99)

where νr is real and nr is an integer number. The energies and eigenvalues of the integrals of
motion in the anti-holomorphic space are given by the same expressions with the corresponding
substitution of parameters

ar → ãr = iνr − nr

2
. (100)

The holomorphic wavefunction satisfies a set of differential equations following from the
eigenvalue equation for the operator D(u):

D(u)a1,a2,...,an−1 =
n−1∏
r=1

(u − iar)a1,a2,...,an−1 . (101)

This equation can be solved with the use of the Taylor expansion:

a1,..an−1 =
n−1∏
r=1

zar

r

∞∑
s2=0

(
z1

z2

)s2

. . .

∞∑
sn−1

(
zn−2

zn−1

)sn−1

c(s2, . . . , sn−1), (102)

where the coefficients c(s2, . . . , sn−1) are calculated in a recurrent way. The recurrent relations
obtained from the eigenvalue equations for different operators q ′

r are compatible due to their
commutativity. The obtained solution has the singularities at zkl = 0. But if we consider
(n − 1)! functions ai1 ,...,ain−1

obtained by all possible permutations of parameters ar and
multiply them on the corresponding functions in the anti-holomorphic subspace, it is possible
to construct the wavefunction having the single-valuedness property in two-dimensional
spaces �zr ,

(�z1, . . . , �zn−1) =
∑

{i1,i2,...,in−1}
C{i1,...,in−1}ai1 ,ai2 ,...,ain−1

ãi1 ,̃ai2 ,...,̃ain−1
. (103)

For this purpose one should adjust the coefficients C{i1,...,in−1} in an appropriate way presumably
without additional constraints on the parameters ar and ãr . The composite state of n−1 gluons
has the following total energy:

E = ε + ε̃, ε =
n−1∑
r=1

ε(ar), ε̃ =
n−1∑
r=1

ε(̃ar). (104)

13



J. Phys. A: Math. Theor. 42 (2009) 304020 L N Lipatov

6. Baxter–Sklyanin approach

To find a solution of the Yang–Baxter equation for the open spin chain one can use the Bethe
ansatz. For this purpose it is convenient to work in the transposed representation for the
monodromy matrix

T t (u) =
(

j t
0(u) + j t

3(u) j t
+(u)

j t
−(u) j t

0(u) − j t
3(u)

)
= Lt

1(u)Lt
2(u) . . . Lt

n−1(u), (105)

where the L-operator can be chosen as follows:

Lt
r(u) =

(
u + i∂rzr i∂r

−i∂rz
2
r u − i∂rzr

)
. (106)

The pseudo-vacuum state is defined as a solution of the equation

j t
−(u)0 = 0. (107)

It can be written in the form [11]

0 =
n−1∏
r=1

z−2
r . (108)

Note that the function |0|2 does not belong to the principal series of the unitary
representations. As a result, the states constructed in the framework of the Bethe ansatz
by applying the product of the operators j r

+(ur) to 0,

t
k =

k∏
r=1

j t
+(ur)0, (109)

are non-physical. Nevertheless, these states are eigenfunctions of the integral of motion,

Dt(u)t
k = (

j t
0(u) − j t

3(u)
)
t

k = �(u)t
k, (110)

providing that

�(u) = (u + i)n−1
k∏

t=1

u − ut + i

u − ut

≡ (u + i)n−1 Q(u + i)

Q(u)
(111)

is a polynomial, which leads to a quantization condition for the Bethe roots ut . If we
parametrize this polynomial as follows:

�(u) =
n−1∏
l=1

(u − ial), (112)

the above-defined Baxter function Q(u) can be calculated as

Q(u) = φ(u)

n−1∏
l=1


(−iu − al)


(−iu + 1)
. (113)

Here for generality we included the factor φ(u) which is an arbitrary periodic function

φ(u) = φ(u + i). (114)

In the case of a finite number of the multipliers j t
+(ur) in the Bethe ansatz for the

wavefunction k , the expression Q(u) is also a polynomial:

Q(u) =
k∏

r=1

(u − ur). (115)
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For such solutions the parameters al = −kl − 1 are negative integer numbers satisfying the
condition

n−1∑
l=1

kl = k. (116)

The corresponding Baxter functions can be written as follows:

Q(u) =
n−1∏
l=1

kl∏
t=1

(u + it) =
maxt kt∏
p=1

(u + ip)rp , (117)

where rp is the number of kt satisfying the condition kt � p.
As was mentioned above, the polynomial solutions for Q(u) are non-physical, because the

corresponding wavefunctions  do not belong to the principal series of unitary representations
of the Möbius group. We should find a set of non-polynomial solutions Qs(u) satisfying this
physical requirement.

According to Sklyanin [14] the correct variables in which the dynamics of the Heisenberg
spin model is drastically simplified are the zeros b̂r of the operator B(u) = j t

+(u) entering in
the monodromy matrix

B(u) = Pn−1

n−2∏
k=1

(u − b̂r ), Pn−1 = i
n−1∑
r=1

∂r , (118)

where the operators b̂r and Pn−1 commute each with others,

[b̂r , b̂s] = [b̂r , Pn−1] = 0. (119)

It is convenient to pass from the coordinate representation �z to the Baxter–Sklyanin
representation [12], in which the currents j t

+(u) and (j t
+(u))∗ (together with the operators

b̂r , b̂
∗
r and Pn−1, P

∗
n−1) are diagonal. We denote the eigenvalues of the Sklyanin operators

by br, b
∗
r . The kernel of the unitary transformation to the Baxter–Sklyanin representation is

known explicitly for the cases n = 2, n = 3 and n = 4 [12]. For general n this integral
operator can be presented as a multi-dimensional integral [13].

In the Baxter–Sklyanin representation the wavefunction in the holomorphic subspace
can be expressed as a product of the pseudo-vacuum state in this representation
0(Pn−1, b1, b2, . . . , bn−2) and the Baxter functions Q(ut),

t(Pn−1; b1, . . . , bn−2) = P
− n−1

2 −m

n−1

n−2∏
k=1

Q(bk)0(Pn−1, b1, . . . , bn−2), (120)

where the power-like behavior in the variable Pn−1 is in an agreement with the normalization
condition.

The analogous representation is valid for the total wavefunction

+( �Pn−1; �b1, . . . , �bn−2) = P
− n−1

2 −m

n−1 (P ∗
n−1)

− n−1
2 −m̃

n−2∏
k=1

Q(�br)0( �Pn−1; �b1, . . . , �bn−2), (121)

with the use of the generalized Baxter function Q(�u) being a bilinear combination of the usual
Baxter functions in the holomorphic and anti-holomorphic subspaces,

Q(�u) =
∑
s,t

ds,tQs(u)Qt(u
∗). (122)

Here Qs(u) are different solutions of the Baxter equation with the same eigenvalue �(u).
The coefficients ds,t are chosen from the requirement that the function Q(�u) satisfies the
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normalization condition everywhere including the points where the functions Qs(u) and
Qt(u

∗) have the poles [12, 13]. For the periodic spin chain this condition leads to the
quantization of the eigenvalue of the operator A(u) + B(u) although a simpler method of
quantization is based on the requirement that all Baxter functions corresponding to the same
eigenvalue should have the same holomorphic energy [12]. In the case of the open Heisenberg
spin model, the situation is simpler and will be discussed below.

7. Baxter–Sklyanin representation for two and three gluon states

Let us consider the composite states constructed from two and three reggeons in the framework
of the Baxter–Sklyanin approach. In the case n = 2 we have the following integral of motion
in the transposed space:

Dt(u) = j0 − j3 = u − i∂1z1, (123)

and its eigenstates in accordance with the Sklyanin approach are given by the expression

t ∼ p
− 1

2 −m

1 z−2
1 ∼ z

− 3
2 +m

1 . (124)

The corresponding transposed Hamiltonian is presented below:

ht = ln
(
∂1z

2
1

)
+ ln ∂2 + 2γ. (125)

Its eigenvalue calculated for the above eigenfunction t is

εm = ψ
(− 1

2 + m
)

+ ψ
(

1
2 − m

)
+ 2γ. (126)

For the states composed from three reggeized gluons the transposed integral of motion in
the holomorphic subspace is

Dt
3(u) = u2 − iu(∂1z1 + ∂2z2) + ∂1∂2z1z1,2 (127)

and the operator j t
+ is given below:

j t
+ = iu(∂1 + ∂2) − ∂1∂2z12 = i(∂1 + ∂2)(u − b̂1), (128)

where

b̂1 = −i
∂1∂2

∂1 + ∂2
z12. (129)

The operator j t
+ is easily diagonalized after a transition to the momentum representation, where

i∂1fp1,p2 = p1fp1,p2 , i∂2fp1,p2 = p2fp1,p2 . (130)

In this case the eigenvalue equation for j t
− has the form(

u(p1 + p2) − ip1p2

(
∂

∂p1
− ∂

∂p2

))
f = (p1 + p2)(u − b1)f, (131)

where b1 is the eigenvalue of b̂1. Its solution is given below:

f = χ(p1 + p2, b1)

(
p1

p2

)−ib1

, (132)

where χ is an arbitrary function of p1 + p2 and b1. The dependence of t on p1 + p2 is fixed
by the normalization condition:

t ∼ (p1 + p2)
−a1−a2 . (133)

16



J. Phys. A: Math. Theor. 42 (2009) 304020 L N Lipatov

On the other hand, the eigenvalue equation for the integral of motion in the momentum
space can be written in the form

p1p2
∂

∂p1

(
∂

∂p2
− ∂

∂p1

)
(p1, p2) = a1a2(p1, p2). (134)

Using the ansatz

(p1, p2) = (p1 + p2)
−a1−a2η(y), y = p2

p1
, (135)

we obtain the following equation for the function η(y):

(y2∂2 + (a1 + a2 + 1)y∂ − a1a2)η(y) = (−y3∂2 − 2y2∂)η(y). (136)

There are two independent solutions of this equation:

η1(y) =
∞∑

k=1


(k − a1)
(k − a2)(−1)k−1y−k


(k + 1)
(k)
(1 − a1)
(1 − a2)

= 1

y
F

(
1 − a1, 1 − a2, 2;− 1

y

)
= 
(a1 − a2)y

−a1


(1 − a2)
(1 + a1)
F (−a1, 1 − a1, 1 + a2 − a1;−y)

+

(a2 − a1)y

−a2


(1 − a1)
(1 + a2)
F (−a2, 1 − a2, 1 + a1 − a2;−y) (137)

and

η2(y) = 1

a1a2
+

∞∑
k=1


(k − a1)
(k − a2)(−1)k−1y−k


(k + 1)
(k)
(1 − a1)
(1 − a2)
(ln y + ck(a1, a2))

= −
(−a1)
(+a2)


(1 + a2 − a1)
y−a1F(−a1, 1 − a1, 1 + a2 − a1;−y), (138)

where

ck(a1, a2) = ψ(k) + ψ(k + 1) − ψ(k − a1) − ψ(1 − k + a2). (139)

One can construct the bilinear combination of these solutions having the single-valuedness
property at �y = ∞,

η(�y) ∼ η1(y)̃η2(y
∗) + η2(y)̃η1(y

∗) + C̃η1(y)̃η1(y
∗). (140)

On the other hand, let us use the above expression for η1(y) and η2(y) expressed in terms of
the hypergeometric function regular at y = 0. To cancel the interference terms violating the
single-valuedness condition at y → 0 in the above bilinear combination for η(�y) we should
fix C̃ as follows:

C̃ = − sin(a1π) sin(a2π)

π sin((a1 − a2)π)
= − sin(̃a1π) sin(̃a2π)

π sin((̃a1 − ã2)π)
. (141)

Finally, with the use of the integral representation for the hypergeometric function the
wavefunction t in the momentum space can be written as follows:

t(�p1, �p2) = (p1 + p2)
−a1−a2(p∗

1 + p∗
2)

−ã1−ã2φ(�y), (142)

where φ(y) is given below:

φ(�y) =
∫

d2t

(
1

ty
+ 1

)a1
(

1

t∗y∗ + 1

)ã1

(1 − t)a2−1(1 − t∗)̃a2−1 (143)
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and satisfies the single valuedness condition in the �y-space due to the quantization conditions
(92).

The transition to the Baxter–Sklyanin representation (u, ũ) corresponds to the Mellin-type
transformation of φ(�y):

φ(u, ũ) =
∫

d2y

|y|2 y−iu(y∗)−ĩuφ(�y) =
∫

d2t (1 − t)a2−1(1 − t∗)̃a2−1χ(�t), (144)

where

−iu = iνu +
Nu

2
, −ĩu = iνu − Nu

2
. (145)

Here νu is a real number and Nu = 0,±1,±2, . . .. The function χ is given below:

χ(�t) =
∫

d2y

|y|2 y−iu(y∗)−ĩu

(
1

ty
+ 1

)a1
(

1

t∗y∗ + 1

)ã1

= t iu(t∗)ĩuc1. (146)

The corresponding integrals can be calculated explicitly:

c1 = π

(1 + ã1)


(−a1)


(iu)
(−iu − a1)


(1 − ĩu)
(1 + ĩu + ã1)
,

c2 =
∫

d2t

|1 − t |2 (1 − t)a2(1 − t∗)̃a2 t iu(t∗)ĩu = π

(a2)


(1 − ã2)


(1 + ĩu)
(−iu − a2)


(−iu)
(1 + ĩu + ã2)
.

Therefore we obtain for φ(u, ũ) the following expression:

φ(u, ũ) = π2
(1 + ã1)
(a2)


(−a1)
(1 − ã2)


(iu)
(1 + ĩu)


(−iu)
(1 − ĩu)


(−iu − a1)
(−iu − a2)


(1 + ĩu + ã1)
(1 + ĩu + ã2)
. (147)

The inverse transformation corresponds to the Baxter–Sklyanin representation for the
wavefunction:

t(�p1, �p2) = (p1 + p2)
−a1−a2(p∗

1 + p∗
2)

−ã1−ã2

∫
d2uφ(u, ũ)

(
p1

p2

)−iu (
p∗

1

p∗
2

)−ĩu

, (148)

where

−iu = iνu +
Nu

2
, −ĩu = iνu − Nu

2
,

∫
d2u ≡

∫ ∞

−∞
dνu

∞∑
Nu=−∞

. (149)

One can interpret the wavefunction φ(u, ũ) in the Baxter–Sklyanin representation as a
product of the pseudo-vacuum state ũu and the total Baxter function:

φ(u, ũ) = ũuQ(u, ũ), (150)

where

Q(u, ũ) ∼ 
(iu)
(ĩu)


(1 − iu)
(1 − ĩu)


(−iu − a1)
(−iu − a2)


(1 + ĩu + ã1)
(1 + ĩu + ã2)
. (151)

This expression for Q(u, ũ) is symmetric to the substitution

(u, a1, a2) ↔ (̃u, ã1, ã2) (152)

and can be written in the factorized form

Q(u, ũ) ∼ Q(u, a1, a2)Q(̃u, ã1, ã2), (153)

where

Q(u, a1, a2) = 
(−iu − a1)
(−iu − a2)


2(1 − iu)
�(u), (154)
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�(u) =
√

sin(π(−iu − a1)) sin(π(−iu − a2))

sin2(−iπu)
. (155)

The expression Q(u, a1, a2) differs from the Baxter function in the holomorphic space

Q(u) = 
(−iu − a1)
(−iu − a2)


2(1 − iu)
(156)

only by the periodic function �(u) and therefore it can also be considered as a Baxter function.
Note, however, that the function �(u) contains a square root singularity and, as a result, the
recurrence relation for the function Q(u, ũ) differs from the similar relation for Q(u) by a
sign on its right-hand side:

Q(u + i, ũ) = − (u − ia1)(u − ia2)

(u + i)2
Q(u, ũ). (157)

To overcome this problem we can write Q(u, ũ) as follows:

Q(u, ũ) = Q(u)Q(̃u)�(u, ũ), (158)

where the function � is given below:

�(u, ũ) = sin(π(ĩu + ã1)) sin(π(ĩu + ã2))

sin(iπu) sin(iπũ)
. (159)

This additional factor �(u, ũ) can be included in the definition of a new pseudo-vacuum state:

0 = �(u, ũ)ũu. (160)

Really this pseudo-vacuum state can be considered as the additional factor for the
wavefunction in the Baxter–Sklyanin representation providing correct hermicity properties
of the Hamiltonian and integrals of motion in this representation2 (see also [13]). We shall
return to this problem in our future publications.

8. Conclusion

In this paper, we established that the gluon production amplitudes in the planar approximation
could have the Mandelstam cut contributions in the multi-Regge kinematics at some physical
regions. For the cut corresponding to the composite states of n reggeized gluons the number
of external particles should be k � 2 + 2n. The wavefunctions of these states in the adjoint
representation satisfy the BFKL-like equation integrable in LLA and have the property of the
holomorphic factorization. The corresponding holomorphic Hamiltonian coincides with the
local Hamiltonian for an integrable open Heisenberg spin model. The Baxter equation for
this model is reduced to a simple recurrent relation and can be solved in terms of the product
of the 
-functions. We constructed the wavefunctions of composite states of 2 and 3 gluons
explicitly.
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Appendix A. Mandelstam cuts in planar diagrams

Here we discuss an appearance of the Mandelstam cuts [43] in the crossing channels having
adjoint representations of the color group SU(Nc) for the planar Feynman diagrams in the
t’Hooft limit α � 1, αcNc ∼ 1 and calculate the impact factors corresponding to the multi-
reggeon exchange. To begin with, let us consider the elastic amplitude A(s, t) for the gluon–
gluon scattering in the Regge kinematics. It is well known that in the leading logarithmic
approximation the corresponding t-channel partial wave contains only one reggeized gluon
pole. The contribution from the Pomeron exchange with color singlet quantum numbers is
suppressed at large Nc. The BFKL Pomeron appears as a composite state of two reggeized
gluons and corresponds to the Mandelstam cut in the j -plane of the crossing channel. For the
elastic amplitude the cuts in the adjoint representation appear in non-planar diagrams and are
also suppressed at large Nc. Indeed, according to S Mandelstam these contributions should
have the following form:

A(s, t) ∼
∫

d2k⊥
(2π)2is

(−s)j (−�k2)

�k2

(−s)j (−(�q−�k)2)

(�q − �k)2
�1(k⊥, q)�2(k⊥, q), (A.1)

where j (t) are the Regge trajectories. The impact factors �r are the integrals from the
particle–reggeon scattering amplitudes fr (including the reggeon residues) over the invariants
sr in the direct channel:

�r(k⊥, q⊥) =
∫

L

dsr

2π i
fr(pr, k, q), s1 = (pA − k)2, s2 = (pB + k)2. (A.2)

Here the integration contour L goes along the real axis above the right singularities of fr

and below left ones according to the Feynman prescription. Only when the amplitude fr is
constructed from the diagrams having both these singularities simultaneously, the result of the
integration is non-zero because in an opposite case we can shift the contour L from the real
axis to infinity with a vanishing result. The Mandelstam cuts are absent also for the planar
amplitude with five external particles.

However, in the case of the six-point amplitude there are planar diagrams in which the
Mandelstam cuts are present. Let us denote the momenta of initial gluons by pA, pB and the
momenta of final particles by pA′ , k1, k2, pB ′ in accordance with the order of multiplication
of the corresponding color matrices Tr . Then this cut appears in the physical region, where

s = (pA + pB)2 > 0, s1 = (pA′ + k1)
2 < 0,

(A.3)
s2 = (k1 + k2)

2 > 0, s3 = (k2 + pB ′)2 < 0.

This region corresponds to the transition of four particles with their momenta pA,−k1,−k2 and
pB to the two particles with the momenta pA′ and pB ′ . In the multi-Regge kinematics, where the
corresponding Sudakov parameters are strongly ordered 1 � −β1 � −β2,−α1 � −α2 � 1,
the integrands in the impact factors �r :

�1(�k, �k1, �q2,) =
∫

L

s dα

2π i
f1(pA, k, k1, q2),�2(�k, �k2, �q2,) =

∫
L

s dβ

2π i
f2(pB, k, k2, q2) (A.4)

in the simplest case have only the poles in the integration variables α ≈ 2kpA/s and
β ≈ 2kpB/s:

f1 = 1

(pA − k)2 + iε

1

(k1 + q2 − k)2 + iε
= 1

−sα − �k2 + iε

1

−sαβ1 − (�k1 + �q2 − �k)2 + iε
,

f2 = 1

(pB + k)2 + iε

1

(k2 − q2 + k)2 + iε
= 1

sβ − �k2 + iε

1

sα2β − (�k2 − �q2 + �k)2 + iε
. (A.5)
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These poles are situated above and below the integration contours L due to the inequalities
β1 < 0, α2 < 0 valid in the considered kinematical region where s1 < 0, s3 < 0. Therefore
the integrals are non-zero and can be calculated by residues

�1(�k, �k1, �q2) = 1

(�k1 + �q2 − �k)2
, �2(�k, �k2, �q2) = 1

(�k2 − �q2 + �k)2
. (A.6)

In the case of production of two gluons with the same helicity at the multi-Regge
kinematics in the physical region where s1 < 0, s2 > 0, s3 < 0 the amplitude is proportional
to the Born expression

A2→4 = f2→42sgT
c1
A′A

1

|q1|2 gC(q2, q1)T
d1
c2c1

1

|q2|2 gC(q3, q2)T
d2
c3c2

1

|q3|2 gT
c3
B ′B, (A.7)

where the reggeon–reggeon gluon vertex C is given above (see (7)). In the lowest
order approximation the corresponding proportionality factor fLO for the Mandelstam cut
contribution in the t2-channel contains some additional multipliers from the effective vertices
C in comparison with the above result (see [4, 39]),

fLO = i
g2Nc

4π

∫
μ2ε d2−2εk

(2π)1−2ε

(−s2)
j (−�k2)−1

|k|2
(−s2)

j (−(�q2−�k)2)−1

|q2 − k|2 �̃1�̃2, (A.8)

where

�̃1 = q∗
1 (k1 + q2 − k)(q∗

2 − k∗)�1(�k, �k1, �q2) = q∗
1 (q∗

2 − k∗)
k∗

1 + q∗
2 − k∗ , (A.9)

�̃2 = q3(q
∗
2 − k∗

2 − k∗)(q2 − k)�2(�k, �k2, �q2) = q3(q2 − k)

q2 − k2 − k
. (A.10)

In the weak coupling limit j = 1 and at ε → 0 the amplitude fLO is

lim
j→1

fLO = π ia

(
ln

�q2
1 �q2

2

(�k1 + �k2)2μ2
− 1

ε

)
, a = g2Nc

8π2
(4π e−γ )ε, (A.11)

which coincides in this limit with the logarithm of the factor C introduced in [38]. This factor
violates the Regge factorization of the BDS amplitude in the considered kinematical region
due to the presence of the Mandelstam cut [38].

One can take into account the gluon reggeization in the channels t1 and t3 using the
following substitution in the above expressions:

1

−sα − �k2 + iε
→ −(sα − iε)j (t1)−2,

1

sβ − �k2 + iε
→ −(−sβ − iε)j (t3)−2. (A.12)

It would lead to the multiplication of the integrand with the real factor

R =
(

−(�k1 + �q2 − �k)2

β1

)j (t1)−1 (
−(�k2 − �q2 + �k)2

α2

)j (t3)−1

≈ (−s1)
j (t1)−1(−s3)

j (t3)−1.

(A.13)

We can include also the diagrams with the reggeized gluon scattering in the crossing channel.
It leads to the following expression for the Mandelstam contribution in LLA:

f Mand
LLA = iR

g2Nc

4π

∫
μ2ε d2−2εk

(2π)1−2ε

μ2εd2−2εk′

(2π)1−2ε

1

|k|2
1

|q2 − k|2 G(�k, �k′, �q2; ln(−s2))�̃1�̃2,

(A.14)
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where G is the Green’s function satisfying the BFKL-like equation for the octet quantum
numbers in the t2-channel:

∂

∂ ln s2
G(�k, �k′, �q2; ln(−s2)) = KG(�k, �k′, �q2; ln(−s2)),

(A.15)

G(�k, �k′, �q2; 0) = (2π)1−2ε

μ2ε
δ2−2ε(k − k′).

Here the operator K in LLA can be expressed in terms of the Hamiltonian H which does not
contain infrared divergences:

K = ω(t2) − g2Nc

16π2
H, ω(t) = a

(
1

ε
− ln

−t

μ2

)
,

(A.16)

H = 2 ln
|p1|2|p2|2

|q2|2 + p1p
∗
2 ln|ρ12|2 1

p1p
∗
2

+ p∗
1p2 ln|ρ12|2 1

p∗
1p2

,

where p1 = k, p2 = q − k.
Let us consider now the Mandelstam cuts constructed from several reggeons. The non-

vanishing contribution from the exchange of r + 1 reggeons appears in the planar diagrams
only if the number of the external lines is n � 2r + 4. For the inelastic transition 2 → 2 + 2r

with the initial and final momenta pA, pB and pA′ , k1, k2, . . . , k2r , pB ′ , respectively, the cut
exists in the crossing channel with the momentum

q = pA − pA′ −
r∑

l=1

kl = pB ′ − pB +
2r∑

l=r+1

kl =
r+1∑
l=1

q ′
l , (A.17)

where q ′
l are momenta of reggeons forming the composite state. The corresponding amplitude

has the form

A(pA, pA′ , k1, . . . , k2r , pB ′ , pB)

∼
∫ r∏

t=1

d2q ′
t

2πs

r+1∏
l=1

(−s)j (− �q ′2
l )

|q ′
l |2

�1(�q ′
1, . . . , �q ′

r+1)�2(�q ′
1, . . . , �q ′

r+1). (A.18)

The impact factors �1,2 are given in terms of the integrals over the Sudakov parameters
α′

l = 2q ′
lpA/s, β ′

l = 2q ′
lpB/s from the reggeon–particle scattering amplitudes f1,2:

�1 =
r−1∏
l=1

∫
L

s dα′
l

2π i
f1, �2 =

r−1∏
l=1

∫
L

s dβ ′
l

2π i
f2. (A.19)

In QCD the tree expressions for f1,2 appearing in the planar diagrams are given below:

f1 = I1
1

(pA − q ′
1)

2

1

(pA − k0 − q ′
1)

2
. . .

1(
pA − ∑r

l=1 q ′
l − ∑r−2

l=0 kl

)2

× 1(
pA − ∑r

l=1 q ′
l − ∑r−1

l=0 kl

)2 ,

f2 = I2
1

(pB + q ′
1)

2

1

(pB − k2r+1 + q ′
1)

2
. . .

1(
pB +

∑r
l=1 q ′

l − ∑2r+1
l=r+3 kl

)2

× 1(
pB +

∑r
l=1 q ′

l − ∑2r+1
l=r+2 kl

)2 ,
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where k0 = pA′ , k2r+1 = pB ′ . The additional factors I1,2 contain effective reggeon vertices for
the production and scattering of the gluons with the same helicity. They can be written in the
multi-Regge kinematics (5) as follows (cf [4]):

I1 =
r∏

l=1

q ′∗
l+1

(
Q − ∑l

t=1 q ′
t − ∑l−1

t=1 kt

)(
Q∗ − ∑l+1

t=1 q ′∗
t − ∑l−1

t=1 k∗
t

) r∏
l=1

βr,

(A.20)

I2 =
r∏

l=1

q ′
l+1

(
Q̃∗ +

∑l
t=1 q ′∗

t − ∑l−1
t=1 k∗

2r−t+1

)(
Q̃ +

∑l+1
t=1 q ′

t − ∑l−1
t=1 k2r−t+1

) r∏
l=1

αr,

where Q = pA − pA′ , Q̃ = pB − pB ′ and the Sudakov variables of the produced particles
αl = 2klpA/s, βl = 2klpB/s are strongly ordered:

1 � |β1| � |β2| . . . � |β2k|, |α1| � |α2| � . . . |α2k| � 1. (A.21)

In these variables the functions f1,2 are given below:

f1 = I1
1

−sα′
1 + iε

1

−sβ1α
′
1 − |Q − q ′

1|2 + iε

1

−sβ1α
′
2 + iε

× 1

−sβ2α
′
2 − |Q − q ′

1 − q ′
2 − k1|2 + iε

. . . ,

f2 = I2
1

sβ ′
1 + iε

1

sα2rβ
′
1 − |Q̃ + q ′

1|2 + iε

1

sα2rβ
′
2 + iε

1

sα2r−1β
′
2 − |Q̃ + q ′

1 + q ′
2 − k2r |2 + iε

. . . ,

where we took into account that in the essential region of integration

α′
l ∼ |Q|2

sβl

, β ′
l ∼ |Q̃|2

sα2r−l+1
. (A.22)

In the physical region, where the signs of the Sudakov parameters of momenta kl alternate
with the index l:

β1, α2r < 0; β2, α2r−1 > 0; β3, α2r−2 < 0; . . . , (A.23)

which is equivalent to the following constraints on the invariants:

s1 < 0, s2 < 0, . . . , sr < 0, sr+1 > 0,
(A.24)

sr+2 < 0, sr+3 < 0, . . . , s2r+1 < 0, s > 0,

the integrands in expressions for �1,2 contain poles above and below the integration contours L
over all variables α′

l , β
′
l . Therefore, �1,2 are non-zero and can be calculated by taking residues

from the poles in f1,2:

�1(�q ′
1, . . . , �q ′

r+1) =
r∏

l=1

q ′∗
l+1(

Q∗ − ∑l
s=1 q ′∗

s − ∑l−1
s=1 k∗

s

)(
Q∗ − ∑l+1

t=1 q ′∗
t − ∑l−1

t=1 k∗
t

) (A.25)

�2(�q ′
1, . . . , �q ′

r+1) =
r∏

l=1

q ′
l+1(

Q̃ +
∑l

s=1 q ′
s − ∑l−1

s=1 k2r−s+1
)(

Q̃ +
∑l+1

t=1 q ′
t − ∑l−1

t=1 k2r−t+1
) .

(A.26)

In the case of the production of 2r gluons with the same helicity the amplitude in N = 4
SUSY is proportional to the Born expression containing the effective reggeon–reggeon gluon
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vertices C (7). The proportionality factor f2→2+2r for the Mandelstam cut constructed from
r + 1 reggeized gluons can be written as follows:

f 2→2+2r
LO =

(
i
g2Nc

4π

)r

Q∗Q̃
∫ r∏

l=1

μ2ε d2−2εq ′
l

(2π)1−2ε

r+1∏
l=1

(−sr+1)
j (−|q ′

l |2)−1

|q ′
l |2

�1�2

r∏
t=1

k∗
t k2r−t .

(A.27)

In the leading logarithmic approximation the proportionality factor has the form

f 2→2+2r
LLA =

(
i
g2Nc

4π

)r

Q∗Q̃
∫ r∏

l=1

μ2ε d2−2εpl

(2π)1−2ε

μ2εd2−2εp′
l

(2π)1−2ε

×
r+1∏
l=1

1

|pl|2 G(p, p′; sr+1)�1�2

r∏
t=1

k∗
t k2r−t , (A.28)

where we introduce the new notation pl for the reggeon momenta q ′
l . The Green’s function

satisfies the equation

∂

∂ ln sr+1
G(�p, �p′; sr+1) = KG(�p, �p′; sr+1), G(�p, �p′; 0) =

r∏
l=1

(2π)1−2ε

μ2ε
δ2−2ε(pl − p′

l).

(A.29)

Here the operator K in LLA can be expressed in terms of the Hamiltonian H which does not
contain infrared divergences:

K = ω(t) − g2Nc

16π2
H, ω(t) = a

(
1

ε
− ln

−t

μ2

)
, t = −|q|2,

(A.30)

H = ln
|p1|2|pr+1|2

|q|4 +
r∑

l=1

Hl,l+1,

where

Hl,l+1 = ln|pl|2 + ln|pl+1|2 + plp
∗
l+1 ln|ρl,l+1|2 1

plp
∗
l+1

+ p∗
l pl+1 ln|ρl,l+1|2 1

p∗
l pl+1

. (A.31)

Note that the above Hamiltonian has the property of the holomorphic separability,

H = h + h∗, h = ln
p1pr+1

q2
+

r∑
l=1

hl,l+1, (A.32)

where

hl,l+1 = ln pl + ln pl+1 + pl ln ρl,l+1
1

pl

+ pl+1 ln ρl,l+1
1

pl+1
. (A.33)

One can also take into account the enhanced contributions in the impact factors leading to the
Regge-type dependence of the amplitude on other invariants si (i �= r + 1).
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